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ABSTRACT

[BMIM]OTf and alcohol-based DES combination with a selected organic solvent (acetone and acetonitrile) have 
been proven to efficiently extracting rotenone (isoflavonoid biopesticide) compound compared to individual organic 
solvents. Their efficiency builds up interest to study the solvent-solute interaction that occurs between both selected 
solvent systems with rotenone. The interaction study was analyzed using FTIR, 1D-NMR and 2D- NMR (NOESY, HMBC). 
Correlation portrayed by NOESY and HMBC of [BMIM]OTf - standard rotenone mixture predicted probable hydrogen 
bonding between the oxygen of rotenone with acidic proton C2-H of [BMIM]OTf. While for the alcohol-based DES-
rotenone mixture, the correlation shows probable interaction to occur between methyl and methoxy group rotenone 
with the hydroxyl group of 1,4-butanediol. In conclusion, potential hydrogen bonding that occurs between solvent 
and solute aid towards the solvent efficiency in extracting rotenone compound while emphasizing on the low cost and 
green mediated solvent systems. 
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ABSTRAK

Gabungan [BMIM]OTf dan DES berasaskan alkohol dengan pelarut organik terpilih (aseton dan asetonitril) terbukti 
cekap dalam mengekstrak sebatian rotenon (biopestisid isoflavonoid) berbanding pelarut organik. Kecekapan tersebut 
menarik minat untuk mengkaji interaksi pelarut -bahan larut yang berlaku antara kedua-dua sistem pelarut terpilih 
dengan rotenon.  Kajian interaksi dikaji menggunakan FTIR, 1D-NMR dan 2D- NMR (NOESY, HMBC).  Korelasi yang 
digambarkan oleh NOESY dan HMBC bagi campuran [BMIM]OTf - rotenon piawai menunjukkan potensi ikatan hidrogen 
antara oksigen rotenon dengan proton berasid C2-H [BMIM]OTf. Bagi campuran DES berasaskan alkohol-rotenon, korelasi 
menunjukkan interaksi berpotensi berlaku antara metil dan kumpulan metoksi rotenon dengan kumpulan hidroksil 
1,4-butanediol. Kesimpulannya, potensi ikatan hidrogen yang wujud antara pelarut dan bahan larut membantu ke arah 
kecekapan pelarut dalam pengekstrakan sebatian rotenon selain faktor kos yang rendah dan sistem pelarut pengantara 
yang hijau.

Kata kunci: Biopestisid; cecair ionik; interaksi pelarut-bahan larut; pelarut eutektik dalam; pengekstrakan 

INTRODUCTION

The extraction process is a research loop backbone prior to 
purification and bio-active constituent’s characterization 
(Sasidharan et al. 2011). It involves several important 
processing parameters which influence the efficacy of the 
extracts. In fact, a conventional extraction process uses 
a variety of organic solvents which include from highly 
polar to nonpolar solvents. However, organic solvents are 
mostly volatile, toxic and flammable leading to several 
human risks, safety issues and environmental problems 
(Carson 2002). Taking all this into consideration, there 
have been several studies on the exploration of ionic 
liquids (ILs) and deep eutectic solvent (DES) compatibility 
as green solvents for phytochemicals extraction. 
	 Ionic liquids (ILs) are an organic salt in the liquid 
state under ambient temperature comprises of normally 
charge-stabilized organic cation paired with either 

organic or inorganic anions (Freemantle 2010). While 
DES is a mixture of two naturally occurring components 
namely hydrogen bond acceptor (HBA) such as quaternary 
ammonium halide salts, phosphonium halide salts and 
metal chloride and hydrogen bond donor (HBD) such as 
carboxylic acids, alcohols, amides, carbohydrates and 
metal chloride which associated to each other through 
hydrogen bond interaction (Abott et al. 2004, 2003). Both 
solvents display a wide range of unique properties such 
as high thermal stability, non-flammability, insignificant 
vapor pressure and low chemical reactivity besides their 
fine tunable density, viscosity, polarity and miscibility 
with other common solvents (Bogdanov et al. 2010). 
For that reason, the usage of selected ILs and DES to aid 
the phytochemicals extraction process is considered 
as a great choice in increasing a significant amount of 
bioactive constituents, while at the same time, reducing 
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the use of toxic and volatile organic solvents for a greener 
environment. 
	 The previous study on rotenone extraction, showed 
the potential of binary solvent ionic liquid (ILs), 1-butyl-3-
methylimidazolium trifluoromethanesulfonate, [BMIM]OTf 
with acetone and alcohol-based DES with acetonitrile as an 
extractant medium due to higher yield (%, w/w) of rotenone 
extracted of 0.84 ± 0.05% and 0.84 ± 0.02% (w/w), 
respectively (Othman et al. 2015). However, in order to 
understand what actually lead to both solvent efficiency 
in extracting high yield rotenone compound, this study 
aimed to identify the solvent-solute interaction between 
the selected solvent systems with rotenone compound. 

MATERIALS AND METHODS

CHEMICALS AND MATERIALS

Choline chloride, ChCl (Mw = 139.62 gmol−1, 99% 
(w/w)), 1,4-butanediol (Mw = 90.12 gmol−1, 98% 
(w/w), standard rotenone 95% (w/w) and 1-butyl-3-
methylimidazolium trifluoromethanesulfonate [BMIM]
OTf 98% (v/v) were purchased from Sigma-Aldrich®, 
while acetonitrile 99% (v/v) and acetone 95% (v/v) were 
obtained from Merck. 

SOLUTE-SOLVENT INTERACTION STUDY
ALCOHOL-BASED DEEP EUTECTIC SOLVENT

Alcohol deep eutectic solvent (DES) was prepared by 
mixing choline chloride, ChCl (98% in purity) with 1, 
4-butanediol (99% in purity) at a mol ratio of 1/5 according 
to Bi et al. (2013). The mixture was continuously stirred 
at 80°C until a homogeneous mixture was obtained. The 
solution was then kept in Scott bottle once cooled down. 
The structure elucidation of DES was analyzed using FTIR, 
1H NMR and 13C NMR.

BINARY SOLVENT SYSTEMS

The binary solvent system comprises of two different 
solvent systems which are DES: acetonitrile and 1-butyl-
3-methylimidazolium trifluoromethanesulfonate, [BMIM]
OTf: acetone. The binary solvent systems were prepared 
by mixing respective DES and IL with an organic solvent 
(acetone, acetonitrile) at a ratio of 2:8 (Othman et al. 2017) 
until homogenous mixture obtained. 

SOLVENT-SOLUTE MIXTURE

The solute-solvent mixture was prepared by mixing 
standard rotenone with [BMIM]OTf and alcohol-based 
DES binary solvent systems at a solvent to solid ratio of 
10 mL/g. The mixture was mixed homogeneously using 
vortex. Once homogenized, the mixture was diluted with 
a deuterated solvent prior to nuclear magnetic resonance 
(NMR) analysis. 500 μL of deuterated chloroform (CDCl3) 
and deuterated methanol (CD3OD) was added to the 
prepared mixture and transfer into NMR tube. The prepared 

samples were then examined through one dimension (1D) 
and two dimensions (2D) NMR (NOESY, HMBC).

RESULTS AND DISCUSSION

ELUCIDATION OF ROTENONE

Structure elucidation of standard rotenone 95% (Sigma 
Aldrich) was analyzed using FTIR and 1D-NMR. FTIR 
spectrum shows the presence of aromatic CH stretching, 
aromatic sp2 C- stretching, methyl and methine group at 
wavenumber 3081, 2976, 2939 and 2814 cm-1, respectively 
(Figure 1). General wavenumber for carbonyl (C=O) 
of ketone was 1705-1725 cm-1, while alkene (C=C) 
group stretching were 1620-1680 cm-1. However lower 
wavenumber of carbonyl (1670 cm-1) and alkene (1596 
cm-1) stretching observed. This confirms carbonyl 
conjugation in rotenone structure and clarify the rotenone 
structure. In addition, it can also be observed that the C-H 
and methine bend as well as C-O stretching appeared at 
an average frequency of 1410-1513, 1416 and 1210-1233 
cm-1, respectively. Moreover, proton (1H) and carbon (13C) 
chemical shift of standard rotenone (Table 1) showed 
comparable results to proton and carbon chemical shift 
of rotenone reported by Li et al. (2011). Ftir and 1D-NMR 
results confirmed the structure of rotenone compound.

STRUCTURAL ELUCIDATION OF [BMIM]OTF AND 
INTERACTION OCCUR BETWEEN [BMIM]OTF 

AND ROTENONE 

Structure elucidation of [BMIM]OTf and the solvent-solute 
interaction study between rotenone and [BMIM]OTf were 
analyzed through FTIR, 1D-NMR and 2D-NMR (NOESY, 
HMBC). Figure 2 shows the FTIR spectrum of [BMIM]OTf 
and the solute-solvent mixture. By comparing the two 
spectrums, it can be observed reduction in the intensity 
of quaternary amine salt peak which forms with triflate 
[R3HN]+[OTf]- ionic liquid at wavenumber 3536 cm-1 after 
interaction with standard rotenone. Besides that, the C=N 
peak of imidazolium ring that appears at wavenumber 1635 
cm-1 in [BMIM]OTf spectrum also disappear in the solvent-
solute mixture spectrum. Although the peak for standard 
rotenone were not significantly visible due to small ratio of 
standard in the solvent (10 mL/g), the intensity reduction 
and disappearance of peak in the FTIR spectrum shows 
that there is a probable bonding pairing between [BMIM]
OTf cation with rotenone which weakens the interaction 
of cation with anion in ionic liquid.
	 This analysis is supported by a one-dimensional NMR 
(1H and 13C) and two-dimensional NMR (NOESY, HMBC) of 
the solvent-solute mixture. Table 2 shows a comparative 
chemical shift data (ppm) analysis of the binary solvent 
system. ([BMIM]OTf: acetone) with the solvent-solute 
mixture. Slight changes in proton chemical shift (ppm) 
to deshield region were observed for H-2 [BMIM]OTf and 
H-1a ,H-6a H-12a rotenone compared to other protons with 
an increase of 0.02, 0.04, 0.03 and 0.05 ppm, respectively. 
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FIGURE 1. FTIR spectrum of standard rotenone

TABLE 1. 1H and 13C chemical shift (ppm) data of standard rotenone and reference (CDCl3, 400MHz)

1H Chemical shift (ppm) Std 
Rotenone

Chemical shift (ppm) 
Reference 

(Youzhi et al. 2011)

13 C Chemical shift 
(ppm)

Std Rotenone

Chemical shift 
Reference (Youzhi 

et al. 2011)
CH3 1.77, s, 3H 1.77, s, 3H CH3(3”) 17.21 16.8
OCH3 (8) 3.80, s, 3H 3.81 ,s, 3H C-2” 143.12 143.2
OCH3 (9) 3.77, s, 3H 3.77,s, 3H = C H 2 

(1”)
112.63 112.4

=CH2 (1”) 5.07, 4.93, s 5.08 ,s, 1H OCH3 (8) 56.39 56
H-1 (a) 2.95, dd,15.6 Hz,8.24 Hz 2.95,dd, 15.7 Hz, 8.1 Hz OCH3 (9) 55.92 55.4

H-1 (b) 3.32, dd, 16.04 Hz, 10.08 Hz 3.31, dd, 15.6 Hz, 9.8 Hz C=O 189.00 188.9
H-2 5.23, t, 8.94 Hz 5.24, t, 9.30 Hz C-2 87.91 87.1
H-4 6.50, d, 8.68 Hz 6.50, d, 8.5 Hz C-1 31.35 30.60
H-5 7.84, d, 8.68 Hz 7.83, s, 1H C-3a 167.44 166.7
H-7 6.77, s, 1H 6.77, s, 1H C-4 104.91 104.3
H-10 6.45, s, 1H 6.45, s, 1H C-5 130.05 129.2
H-12 (d) 4.61, dd, 11.88 Hz, 3.2 Hz 4.60, dd, 12.1 Hz, 3.0 Hz C-5a 113.42 113.3
H-12 (c) 4.18, d, 12.36 Hz 4.17, d, 12.1 Hz C-6a 44.67 43.5
H-6 (a) 3.83, d, 4.12 Hz 3.84, d, 3.0 Hz C-6b 104.96 105.2
H-12 (a) 4.93,m 4.93, s C-7

C-8
C-9
C-10
C-10a
C-12
C-12a
C-13a
C-13b

110.44
143.94
149.56
100.99
147.46
66.35
72.30
158.02
113.04

110.7
143.3
149.5
101.4
147.7
65.8
71.7
157.8
113
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FIGURE 2. Comparison between FTIR spectrum of [BMIM]OTf (black) and FTIR 
spectrum of [BMIM]OTf: Std rotenone mixture (blue)

TABLE 2. Comparative chemical shift (ppm) data analysis of binary solvent system ([BMIM]OTf: acetone) 
with chemical shift (ppm) data of solvent-solute mixture (CDCl3, 400MHz)

1H Chemical shift (ppm), 
Mixture

Chemical shift 
(ppm) Solvent

13 C Chemical 
shift (ppm) 
(DEPT135), 

Mixture

Chemical 
shift (ppm) 

Solvent

[BMIM]
OTf

CH3 (3a)
CH3 (4”)
CH2 (3”)
CH2 (2”)
CH2 (1”)
H-4
H-5
H-2
CH3 acetone

4.00, s, 3H
0.96, t, 7.32 Hz
1.37, sext, 2H
1.88, q, 2H
4.23, t, 7.32 Hz
7.47, m
7.46, m
9.13, s, 1H
2.17, s, 6H

3.99, s, 3H
0.96, t, 7.32 Hz
1.37, sext, 2H
1.87, q, 2H
4.23, t, 7.34 Hz
7.46, d, 1.84 Hz
7.45, d, 1.84 Hz
9.11, s, 1H
2.17, s, 6H

CH3 (3a)
CH3 (4”)
C-3”
C-2”
C-1”
C-2
C-4
C-5
CF3
CH3 acetone

36.26
13.23
19.31
31.91
49.76
136.64
123.73
122.33

-
30.82

36.27
13.24
19.31
31.91
49.77

136.63
123.71
122.29
119.08
30.73

Rotenone

CH3
OCH3 (8)
OCH3 (9)
=CH2 (1”)
H-1 (a)
H-1 (b)
H-2
H-4
H-5
H-7
H-10
H-12 (d)
H-12 (c)
H-6 (a)
H-12 (a)

1.77, s, 3H
3.81, s,3H
3.76, s, 3H
5.08, 4.94, s
2.99,dd,8.24 Hz
3.30,dd,10.08 Hz, 16.04 Hz
5.25, t
6.50,d,8.24 Hz
7.83, d,8.72 Hz
6.76, s, 1H
6.46, s, 1H
4.62,dd,12.36 Hz, 3.2 Hz
4.20
3.86, d, 3.68Hz
4.98, m

1.77, s, 3H
3.80, s,3H
3.77, s, 3H
5.07, 4.93, s
2.95,dd,15.6 Hz,8.24 Hz
3.32,dd,16.04 Hz, 10.08 Hz
5.23, t, 8.94 Hz
6.50,d, 8.68 Hz
7.84,d, 8.68 Hz
6.77, s, 1H
6.45, s, 1H
4.61, dd, 11.88 Hz, 3.2 Hz
4.18,d,12.36 Hz
3.83,d, 4.12 Hz
4.93, m

CH3 (3”)
C-2”
=CH2 (1”)
OCH3 (8)
OCH3 (9)
C=O
C-2
C-1
C-3a
C-4
C-5
C-5a
C-6a
C-6b
C-7
C-8
C-9
C-10
C-10a
C-12
C-12a
C-13a
C-13b

17.03
-

112.46
56.30
55.79
206.95
87.81
31.19

-
104.73
129.83

-
44.50

-
110.50

-
-

100.94
-

66.25
72.19

-
-

17.21
143.12
112.63
56.39
55.92

189.00
87.91
31.35

167.44
104.91
130.05
113.42
44.67

104.96
110.44
143.94
149.56
100.99
147.46
66.35
72.30

158.02
113.04
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While for carbon chemical shifts (ppm), it was found that 
almost all the carbon has a different chemical shift in the 
mixture. C-4 and C-5 chemical shift (ppm) of [BMIM] 
slightly deshield with 0.02 and 0.04 ppm increase, while 
rotenone carbonyl carbon chemical shift up to 17.95 ppm 
increase. Change in chemical shift to deshield region might 
due to interaction occurrence around acidic proton (H-2) 
of [BMIM] cation with rotenone compound. 
	 This interaction was further convinced through NOESY 
spectrum (Figure 3(a)) which shows how close solute 

and solvent in space. There was a correlation between 1) 
H-1 rotenone with proton CH3 (4”) [BMIM] OTf, 2) H-1 
rotenone with proton CH2 (3”) [BMIM]OTf, 3) H-4 and H-10 
rotenone with protons H-2 [BMIM]OTf. This correlation 
show that H-1, H-4 and H-10 of rotenone were close in 
space with alkyl (CH3 (4”), CH2 (3”)) and acidic proton 
(H-2) of [BMIM] cation. Meanwhile, the HMBC spectrum 
(Figure 3(b)) supports through long-distance correlation 
between CH3 (3”) [BMIM]OTf with =CH2 standard 
rotenone. All of the correlation indicates the probability 

FIGURE 3. a) NOESY spectrum of mixture [BMIM]OTf: acetone: rotenone and b) HMBC spectrum of 
mixture [BMIM]OTf: acetone: rotenone. (*Blue = rotenone, *Red = [BMIM]OTf)
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of hydrogen bonding between the acidic hydrogen (C2-H) 
of imidazolium ring with oxygen of rotenone. This bond is 
likely a contributing factor to the effectiveness of [BMIM]
OTf in extracting rotenone compounds in high quantities. 
Figure 6(a) portrays predicted interaction of ionic liquids, 
[BMIM]OTf with solute (rotenone standard).

STRUCTURAL ELUCIDATION OF DEEP EUTECTIC SOLVENT 
(DES) AND INTERACTION OCCUR BETWEEN 

DES AND ROTENONE 

The prepared DESs with a density of 0.9664 g/mL were 
elucidated using FTIR, 1H NMR and 13C NMR. Based on 
the FTIR spectrum (Figure 4(a)) it could be observed that 
the broad OH bond stretched at 3294 cm-1 of choline 
chloride, ChCl and 1, 4-butanediol along with Sp3 C-H 

that reached its stretching peak at 2937 and 2868 cm-1. 
CH2 and CH3 bending were also observed at 1478 and 
1417 cm-1, respectively. Meanwhile, C-N+ symmetric 
stretching of choline chloride, ChCl was observed at 
748 cm-1. There were several peaks that represented by 
1, 4-butanediol. The peaks were C-O-H bond bending 
(multi-peaks, broad and weak) at a range of 1300-1200 
cm-1 and C-O bond stretching peak in 1° alcohol at 1049 
cm-1. Choline chloride, ChCl was used as hydrogen 
bond acceptor (HBA) while 1, 4-butanediol was used as 
hydrogen bond donor (HBD). The stretching vibrations of 
alcohol in both 1, 4-butanediol and choline chloride, ChCl 
shifted to lower frequencies from 3340 cm-1 in ChCl (Park 
et al. 2013) to 3294 cm-1 in 1,4- butanediol DES, which 
was prepared by mixing two components. It is known that 

FIGURE 4. a) FTIR spectrum of DES b) FTIR spectrum of solute-solvent mixture (STD rotenone: DES)
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the existence of the main hydrogen bonding in DES was 
due to the bonding between Cl- ion in ChCl and hydrogen 
donor molecule (Shamsuri & Daik 2012). Nevertheless, 
the shift to lower frequencies of hydroxyl stretching 
vibration could be attributed to the potential hydrogen 
bond formation through hydroxyl group in ChCl.
	 The proton nuclear magnetic resonance,1H-NMR 
(600MHz) spectrum of DES was obtained in deuterated 
methanol (CD3OD). The 1H-NMR spectrum showed the 
mixture of choline chloride, ChCl and 1, 4-butanediol, 
where the chemical shift for choline chloride, ChCl 
appeared at 𝛿 (ppm) 3.255(s, 9H), 3.530-3.592 (m, 2H) 
and 4.016-4.041 (m, 2H). While for 1, 4-butanediol, the 
chemical shift was observed at 𝛿 (ppm) 1.591-1.635 (m, 
2H) and 3.583-3.592 (m, 2H). 
	 The carbon-13 nuclear magnetic resonance, 
13C-NMR (600MHz) spectrum of DES was also obtained 
in deuterated methanol (CD3OD). The chemical shift for 
choline chloride, ChCl appeared at 𝛿 (ppm) 53.35 (CH3), 
55.71(CH2) and 67.62 (CH2). While for 1, 4-butanediol, 

the chemical shift was observed at 𝛿 (ppm) 28.79 (CH2) 
and 61.49 (CH2). Both 1H-NMR and 13C-NMR spectrum 
chemical shifts were comparable to the previous 
elucidation on DES as according to Dai et al. (2013). Thus, 
confirm the structure of alcohol-based DES.
	 FTIR spectroscopy, 1D-NMR and 2D- NMR (NOESY 
and HMBC) were used to determine the location and 
interaction between a binary solvent, (DES: acetonitrile) 
with solute (standard rotenone). In FTIR spectra (Figure 
4(b)) of the mixture, it can be observed the existence 
of acetonitrile cyanide peak, C≡N, carbonyl (C=O) and 
alkenes (C=C) of rotenone which previously not observed 
in DES FTIR spectrum. However, observations only showed 
the presence of rotenone and acetonitrile without a 
clear picture of the interaction between the solute (STD 
rotenone) with alcohol-based deep eutectic solvent (DES).
	 Therefore, the chemical shift (ppm) data analysis of 
solute-solvent mixture using a one-dimensional NMR was 
compared to the chemical shifts (ppm) of binary solvent 
(DES: acetonitrile) in Table 3 to identify the changes in 

TABLE 3. Comparative chemical shift (ppm) data analysis of binary solvent system (DES: acetonitrile) with chemical 
shift (ppm) data of solvent-solute mixture, (CD3OD, 400MHz)

1H Chemical shift (ppm) 
Mixture

Chemical shift (ppm) 
Solvent

13 C Chemical 
shift (ppm) 

Mixture

Chemical 
shift (ppm)

Solvent

DES

CH3

H-2”/H-3”
H-1”/H-4”
H-1
H-2

3.29, s
1.56, m, 2H
3.55, m, 2H
4.07, m
3.37, m

3.30, s, 9H
1.58, m, 2H
3.56, m, 2H
3.73, m, 2H
3.38, t, 2H, 4.8 Hz

CH3

C-2”/ C-3”
C-1”/ C-4”
C-1
C-2
C≡N

-
28.99
61.59

-
-
-

-
29.19
61.84

-
-

117.30

Rotenone

CH3

OCH3 (8)
OCH3 (9)
= CH2 (1”)
H-1 (a)
H-1 (b)
H-2
H-4
H-5
H-7
H-10
H-12 (d)
H-12 (c)
H-6 (a)
H-12 (a)

1.74, s, 3H
3.75, s,3H
3.66 s, 3H
5.05, 4.92, s
2.93, dd, 8.24 Hz, 15.56 Hz
3.27, dd, 9.60 Hz, 15.56 Hz
5.29, t, 8.92 Hz
6.50, d, 8.24 Hz
7.78, d, 8.24 Hz
6.70, s, 1H
6.48, s, 1H
4.55, dd, 12.36 Hz, 2.76 Hz
4.20,d, 12.4 Hz
3.86,d, 4.12Hz
5.01, m

1.77, s, 3H
3.80, s,3H
3.77, s, 3H
5.07, 4.93, s
2.95, dd,15.6 Hz,8.24 Hz
3.32, dd, 16.04 Hz, 10.08 Hz
5.23, t, 8.94 Hz
6.50, d, 8.68 Hz
7.84, d, 8.68 Hz
6.77, s, 1H
6.45, s, 1H
4.61,dd, 11.88 Hz, 3.2 Hz
4.18,d, 12.36 Hz
3.83,d, 4.12 Hz
4.93, m

CH3 (3”)
C-2”
=CH2 (1”)
OCH3 (8)
OCH3 (9)
C=O
C-2
C-1
C-3a
C-4
C-5
C-5a
C-6a
C-6b
C-7
C-8
C-9
C-10
C-10a
C-12
C-12a
C-13a
C-13b

16.08
143.74
111.69
55.96
55.33
189.83
87.91
30.79
167.49
104.49
129.61
113.30
44.29
111.07
111.07
143.74
149.92
101.27
148.05
66.10
72.39
158.23
113.13

17.21
143.12
112.63
56.39
55.92
189.00
87.91
31.35
167.44
104.91
130.05
113.42
44.67
104.96
110.44
143..94
149.56
100.99
147.46
66.35
72.30
158.02
113.04
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the interactions that occur. Based on Table 3, change in 
proton chemical shift of H-1 DES and H-2, H-10, H-6a, 
H-12a rotenone with increment of 0.34, 0.06, 0.03, 0.03 
and 0.08 ppm, respectively. Chemical shift (ppm) of 
carbon in the 13C-NMR spectrum also shows the change 
in chemical shifting for carbon C-2”, C=O, C-6b and C-7 
rotenone with the increment of 0.62, 0.83, 6.11 and 0.63 
ppm. This observation is supported by NOESY (Figure 
5(a)) and HMBC spectrum (Figure 5(b)). Where from 
NOESY spectrum can be found that there was a correlation 
between the hydroxyl of choline chloride (ChCl) with 
hydroxyl of 1,4-butanediol in space to confirm the 
existence of hydrogen bonds in DES. Whereas, from 

HMBC spectrum can be observed a long-range correlation 
between 1) CH3 (3”) rotenone with C-2” and C-3” 
1,4-butanediol, 2) OCH3 rotenone with C-1” and C-4” 
1,4-butanediol. The correlation does not show a clear 
interaction between the DES with a standard rotenone. In 
which this correlation only shows interactions likely to 
occur between the methyl group and methoxy group of 
rotenone with hydroxyl 1,4-butanediol. This is likely due 
to the presence of various molecules in a system with a 
different ratio of each molecule. Therefore,  it is difficult 
to determine the bond that exists between the solvent 
and solute. Figure 6(b) shows the correlation that exists 
between DES and the solute (rotenone). 

FIGURE 5. a) NOESY spectrum of mixture (DES: acetonitrile: rotenone) and b) HMBC spectrum of mixture 
(DES: acetonitrile: rotenone) (*Blue = rotenone, *Red = DES)
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FIGURE 6. Simulation on the interaction between solute (STD rotenone) with 
(a)[BMIM]OTf (b) DES (NOESY dan HMBC)

CONCLUSION

In conclusion, both binary solvent systems of [BMIM]
OTf and alcohol-based DES have a great potential as an 
extraction medium compares to volatile organic solvents 
in extracting optimum rotenone extract. This was due to 
the presence of probable hydrogen bonding in [BMIM]
OTf: rotenone, solvent-solute mixture. Meanwhile for DES 
interaction with rotenone, there is an interaction between 
the methyl and methoxy group of rotenone with the 
hydroxyl group of 1,4-butanediol. All of this interaction 
makes it possible for both solvent systems to extract more 
rotenone yield compared to conventional organic solvents. 
In addition to its extracting potential, DES and [BMIM]OTf 
also overcoming the drawback of conventional organic 
solvent enhancing their green properties. Therefore, both 
DES and [BMIM]OTf application as extraction medium is 
considered a wise approach to conserve the environment 
while optimizing the extraction yield of the bioactive 
compound.
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